ChatCloudflareWorkersAI
Workers AI allows you to run machine learning models, on the Cloudflare network, from your own code.
Usage
You'll first need to install the LangChain Cloudflare integration package:
- npm
- Yarn
- pnpm
npm install @langchain/cloudflare
yarn add @langchain/cloudflare
pnpm add @langchain/cloudflare
tip
We're unifying model params across all packages. We now suggest using model
instead of modelName
, and apiKey
for API keys.
import { ChatCloudflareWorkersAI } from "@langchain/cloudflare";
const model = new ChatCloudflareWorkersAI({
model: "@cf/meta/llama-2-7b-chat-int8", // Default value
cloudflareAccountId: process.env.CLOUDFLARE_ACCOUNT_ID,
cloudflareApiToken: process.env.CLOUDFLARE_API_TOKEN,
// Pass a custom base URL to use Cloudflare AI Gateway
// baseUrl: `https://gateway.ai.cloudflare.com/v1/{YOUR_ACCOUNT_ID}/{GATEWAY_NAME}/workers-ai/`,
});
const response = await model.invoke([
["system", "You are a helpful assistant that translates English to German."],
["human", `Translate "I love programming".`],
]);
console.log(response);
/*
AIMessage {
content: `Sure! Here's the translation of "I love programming" into German:\n` +
'\n' +
'"Ich liebe Programmieren."\n' +
'\n' +
'In this sentence, "Ich" means "I," "liebe" means "love," and "Programmieren" means "programming."',
additional_kwargs: {}
}
*/
const stream = await model.stream([
["system", "You are a helpful assistant that translates English to German."],
["human", `Translate "I love programming".`],
]);
for await (const chunk of stream) {
console.log(chunk);
}
/*
AIMessageChunk {
content: 'S',
additional_kwargs: {}
}
AIMessageChunk {
content: 'ure',
additional_kwargs: {}
}
AIMessageChunk {
content: '!',
additional_kwargs: {}
}
AIMessageChunk {
content: ' Here',
additional_kwargs: {}
}
...
*/
API Reference:
- ChatCloudflareWorkersAI from
@langchain/cloudflare
Tool calling
note
Tool calling is only available in @langchain/cloudflare
version 0.0.7
and above.
Cloudflare's API now supports tool calling! The below example demonstrates how to invoke and stream tool calls.
import { ChatCloudflareWorkersAI } from "@langchain/cloudflare";
import {
AIMessageChunk,
HumanMessage,
SystemMessage,
} from "@langchain/core/messages";
import { tool } from "@langchain/core/tools";
import { z } from "zod";
const model = new ChatCloudflareWorkersAI({
model: "@hf/nousresearch/hermes-2-pro-mistral-7b",
cloudflareAccountId: process.env.CLOUDFLARE_ACCOUNT_ID,
cloudflareApiToken: process.env.CLOUDFLARE_API_TOKEN,
// Pass a custom base URL to use Cloudflare AI Gateway
// baseUrl: `https://gateway.ai.cloudflare.com/v1/{YOUR_ACCOUNT_ID}/{GATEWAY_NAME}/workers-ai/`,
});
const weatherSchema = z.object({
location: z.string().describe("The location to get the weather for"),
});
const weatherTool = tool<typeof weatherSchema>(
(input) => {
return `The weather in ${input.location} is sunny.`;
},
{
name: "get_weather",
description: "Get the weather",
}
);
const modelWithTools = model.bindTools([weatherTool]);
const inputMessages = [
new SystemMessage("You are a helpful assistant."),
new HumanMessage("What's the weather like in the North Pole?"),
];
const response = await modelWithTools.invoke(inputMessages);
console.log(response.tool_calls);
/*
[ { name: 'get_weather', args: { input: 'North Pole' } } ]
*/
const stream = await modelWithTools.stream(inputMessages);
let finalChunk: AIMessageChunk | undefined;
for await (const chunk of stream) {
if (!finalChunk) {
finalChunk = chunk;
} else {
finalChunk = finalChunk.concat(chunk);
}
}
console.log(finalChunk?.tool_calls);
/*
[
{ name: 'get_weather', args: { input: 'North Pole' }, id: undefined }
]
*/
API Reference:
- ChatCloudflareWorkersAI from
@langchain/cloudflare
- AIMessageChunk from
@langchain/core/messages
- HumanMessage from
@langchain/core/messages
- SystemMessage from
@langchain/core/messages
- tool from
@langchain/core/tools